The rapid development of remote sensing technologies have gained significant attention due to their ability to accurately localize, classify, and segment objects from aerial images. These technologies are commonly used in unmanned aerial vehicles (UAVs) equipped with high-resolution cameras or sensors to capture data over large areas. This data is useful for various applications, such as monitoring and inspecting cities, towns, and terrains. In this paper, we presented a method for classifying and segmenting city road traffic dashed lines from aerial images using deep learning models such as U-Net and SegNet. The annotated data is used to train these models, which are then used to classify and segment the aerial image into two classes: dashed lines and non-dashed lines. However, the deep learning model may not be able to identify all dashed lines due to poor painting or occlusion by trees or shadows. To address this issue, we proposed a method to add missed lines to the segmentation output. We also extracted the x and y coordinates of each dashed line from the segmentation output, which can be used by city planners to construct a CAD file for digital visualization of the roads.
translated by 谷歌翻译
使用物理互动设备(如小鼠和键盘)阻碍了自然主义的人机相互作用,并增加了大流行期间表面接触的可能性。现有的手势识别系统不具备用户身份验证,使其不可靠。当前手势识别技术中的静态手势会引入较长的适应周期并降低用户兼容性。我们的技术非常重视用户识别和安全。我们使用有意义且相关的手势进行任务操作,从而获得更好的用户体验。本文旨在设计一个强大的,具有面部验证的手势识别系统,该系统利用图形用户界面,主要通过用户识别和授权专注于安全性。面部模型使用MTCNN和FACENET来验证用户,而我们的LSTM-CNN体系结构进行手势识别,并以五类的手势获得了95%的精度。通过我们的研究开发的原型已成功执行了上下文依赖性任务,例如保存,打印,控制视频播放器操作和退出以及无上下文的操作系统任务,例如睡眠,关闭和直观地解锁。我们的应用程序和数据集可作为开源。
translated by 谷歌翻译
Though impressive success has been witnessed in computer vision, deep learning still suffers from the domain shift challenge when the target domain for testing and the source domain for training do not share an identical distribution. To address this, domain generalization approaches intend to extract domain invariant features that can lead to a more robust model. Hence, increasing the source domain diversity is a key component of domain generalization. Style augmentation takes advantage of instance-specific feature statistics containing informative style characteristics to synthetic novel domains. However, all previous works ignored the correlation between different feature channels or only limited the style augmentation through linear interpolation. In this work, we propose a novel augmentation method, called \textit{Correlated Style Uncertainty (CSU)}, to go beyond the linear interpolation of style statistic space while preserving the essential correlation information. We validate our method's effectiveness by extensive experiments on multiple cross-domain classification tasks, including widely used PACS, Office-Home, Camelyon17 datasets and the Duke-Market1501 instance retrieval task and obtained significant margin improvements over the state-of-the-art methods. The source code is available for public use.
translated by 谷歌翻译
As information extraction (IE) systems have grown more capable at whole-document extraction, the classic task of \emph{template filling} has seen renewed interest as a benchmark for evaluating them. In this position paper, we call into question the suitability of template filling for this purpose. We argue that the task demands definitive answers to thorny questions of \emph{event individuation} -- the problem of distinguishing distinct events -- about which even human experts disagree. We show through annotation studies and error analysis that this raises concerns about the usefulness of template filling evaluation metrics, the quality of datasets for the task, and the ability of models to learn it. Finally, we consider possible solutions.
translated by 谷歌翻译
Bike sharing systems often suffer from poor capacity management as a result of variable demand. These bike sharing systems would benefit from models to predict demand in order to moderate the number of bikes stored at each station. In this paper, we attempt to apply a graph neural network model to predict bike demand in the New York City, Citi Bike dataset.
translated by 谷歌翻译
This paper proposes an easy-to-compute upper bound for the overlap index between two probability distributions without requiring any knowledge of the distribution models. The computation of our bound is time-efficient and memory-efficient and only requires finite samples. The proposed bound shows its value in one-class classification and domain shift analysis. Specifically, in one-class classification, we build a novel one-class classifier by converting the bound into a confidence score function. Unlike most one-class classifiers, the training process is not needed for our classifier. Additionally, the experimental results show that our classifier \textcolor{\colorname}{can be accurate with} only a small number of in-class samples and outperforms many state-of-the-art methods on various datasets in different one-class classification scenarios. In domain shift analysis, we propose a theorem based on our bound. The theorem is useful in detecting the existence of domain shift and inferring data information. The detection and inference processes are both computation-efficient and memory-efficient. Our work shows significant promise toward broadening the applications of overlap-based metrics.
translated by 谷歌翻译
Time-of-flight (ToF) distance measurement devices such as ultrasonics, LiDAR and radar are widely used in autonomous vehicles for environmental perception, navigation and assisted braking control. Despite their relative importance in making safer driving decisions, these devices are vulnerable to multiple attack types including spoofing, triggering and false data injection. When these attacks are successful they can compromise the security of autonomous vehicles leading to severe consequences for the driver, nearby vehicles and pedestrians. To handle these attacks and protect the measurement devices, we propose a spatial-temporal anomaly detection model \textit{STAnDS} which incorporates a residual error spatial detector, with a time-based expected change detection. This approach is evaluated using a simulated quantitative environment and the results show that \textit{STAnDS} is effective at detecting multiple attack types.
translated by 谷歌翻译
We propose a framework in which multiple entities collaborate to build a machine learning model while preserving privacy of their data. The approach utilizes feature embeddings from shared/per-entity feature extractors transforming data into a feature space for cooperation between entities. We propose two specific methods and compare them with a baseline method. In Shared Feature Extractor (SFE) Learning, the entities use a shared feature extractor to compute feature embeddings of samples. In Locally Trained Feature Extractor (LTFE) Learning, each entity uses a separate feature extractor and models are trained using concatenated features from all entities. As a baseline, in Cooperatively Trained Feature Extractor (CTFE) Learning, the entities train models by sharing raw data. Secure multi-party algorithms are utilized to train models without revealing data or features in plain text. We investigate the trade-offs among SFE, LTFE, and CTFE in regard to performance, privacy leakage (using an off-the-shelf membership inference attack), and computational cost. LTFE provides the most privacy, followed by SFE, and then CTFE. Computational cost is lowest for SFE and the relative speed of CTFE and LTFE depends on network architecture. CTFE and LTFE provide the best accuracy. We use MNIST, a synthetic dataset, and a credit card fraud detection dataset for evaluations.
translated by 谷歌翻译
Masked Language Modeling (MLM) has proven to be an essential component of Vision-Language (VL) pretraining. To implement MLM, the researcher must make two design choices: the masking strategy, which determines which tokens to mask, and the masking rate, which determines how many tokens to mask. Previous work has focused primarily on the masking strategy while setting the masking rate at a default of 15\%. In this paper, we show that increasing this masking rate improves downstream performance while simultaneously reducing performance gap among different masking strategies, rendering the uniform masking strategy competitive to other more complex ones. Surprisingly, we also discover that increasing the masking rate leads to gains in Image-Text Matching (ITM) tasks, suggesting that the role of MLM goes beyond language modeling in VL pretraining.
translated by 谷歌翻译
Recently, automated co-design of machine learning (ML) models and accelerator architectures has attracted significant attention from both the industry and academia. However, most co-design frameworks either explore a limited search space or employ suboptimal exploration techniques for simultaneous design decision investigations of the ML model and the accelerator. Furthermore, training the ML model and simulating the accelerator performance is computationally expensive. To address these limitations, this work proposes a novel neural architecture and hardware accelerator co-design framework, called CODEBench. It is composed of two new benchmarking sub-frameworks, CNNBench and AccelBench, which explore expanded design spaces of convolutional neural networks (CNNs) and CNN accelerators. CNNBench leverages an advanced search technique, BOSHNAS, to efficiently train a neural heteroscedastic surrogate model to converge to an optimal CNN architecture by employing second-order gradients. AccelBench performs cycle-accurate simulations for a diverse set of accelerator architectures in a vast design space. With the proposed co-design method, called BOSHCODE, our best CNN-accelerator pair achieves 1.4% higher accuracy on the CIFAR-10 dataset compared to the state-of-the-art pair, while enabling 59.1% lower latency and 60.8% lower energy consumption. On the ImageNet dataset, it achieves 3.7% higher Top1 accuracy at 43.8% lower latency and 11.2% lower energy consumption. CODEBench outperforms the state-of-the-art framework, i.e., Auto-NBA, by achieving 1.5% higher accuracy and 34.7x higher throughput, while enabling 11.0x lower energy-delay product (EDP) and 4.0x lower chip area on CIFAR-10.
translated by 谷歌翻译